Non-Genetic Ataxia

Susan L. Perlman, M.D.
Clinical Professor of Neurology
David Geffen School of Medicine at UCLA
Director, Ataxia Clinic
Is Anything Non-Genetic?
1,212,000 references in PubMed under “genetics”

• “In the 20th century, genetics progressed from the rediscovery of Mendel's Laws to the identification of nearly every Mendelian genetic disease. At this pace, the genetic component of all complex human diseases could be identified by the end of the 21st century, and rational therapies could be developed.” (We should all live so long.)
“...multiple mechanisms are involved in altering human phenotypes, including common alleles with small to moderate effects, rare alleles with moderate to large effects, complex gene-gene and gene-environment interactions, genomic alterations, and noninherited genetic effects.”

Neurologic Diseases with Genetic Aspects

• One gene/one disease (Mendelian)
 SCAs
 FRDA
 HSP
 Huntington disease
 Inborn errors
 PD 1, 3-5, 8 (AD)
 PD 2, 6-7 (AR)
 ALS
 Alzheimer’s disease

• Susceptibility genes (one or more genes, plus other factors)
 Multiple sclerosis
 PD (5 genes)
 Alzheimer’s disease
 Epilepsy
 Psychiatric illness
 Cancer
 Ataxia (?)
 MSA (?)
WHAT QUESTIONS DOES THE PATIENT ASK?

- WHAT DO I HAVE?
- WHAT IS THE CAUSE?
- ARE MY CHILDREN AT RISK?
- CAN IT BE CURED?
- WILL IT GET WORSE?
- HOW BAD WILL IT GET? HOW SOON?
- IS THERE ANY RESEARCH BEING DONE?

- Currently the genetic ataxias hold the podium and offer the clearest answers for most of these questions. Many people are thinking genetics these days.
I’ve had ataxia for 5 years, and my doctor has already sent for the gene testing, and it was normal. Now what can I do, Dr. Perlman?

• Athena Diagnostics, Inc.
 Four Biotech Park
 377 Plantation Street
 Worcester, MA 01605

 10 ataxia gene tests and 2 HSP gene tests available,
 only about 50 to go

• About 5% of patients without a family history will have one of the genetic ataxias.

• But 95% of patients without a family history will probably have non-genetic ataxia.
Is This Genetic?

Any of these could present as sporadic conditions

- Typical (or atypical) dominant cerebellar ataxia
- Friedreich’s ataxia-like syndromes
- Early-onset cerebellar ataxia with retained reflexes
- Mitochondrial syndromes
- Multiple system atrophy picture
 - more rapid progression
 - non-L-dopa responsive Parkinsonism
 - autonomic dysfunction
 - REM sleep disturbance, sleep apnea, stridor
Maybe I Have MSA?

- There’s been a lot published lately about MSA.
- North American MSA Study Group
 Dr. Clifford Shults
 UCSD, Department of Neuroscience
 9500 Gilman Drive
 La Jolla, CA 92093
- MSA starts like ataxia in 20%, like PD in 80%
- It progresses to include ataxia, Parkinsonism, and autonomic problems in everyone.
Is This Pure Cerebellar Ataxia or an Early Multiple System Atrophy?

- 80% of MSAs start with Parkinsonian symptoms and 20% of MSAs start with cerebellar ataxia
- 25% of patients with sporadic cerebellar ataxia will go on develop MSA (with non-L-dopa responsive Parkinsonism, autonomic dysfunction) within 5 years, especially if >50y/o
- Erectile dysfunction can precede ataxia by 5-10 years
- Notable cerebellar disability is seen within 2-3 years
- REM sleep disturbances, obstructive sleep apnea, and stridor are common
Diagnostic Studies that May Help Differentiate MSA from SCA

• The presence of dementia, ophthalmoplegia, or chorea suggest something other than MSA.
• MRI hyper- and hypo-intensities in the putamen
• 18F-fluorodopa PET scanning may reveal basal ganglia abnormalities before the onset of clinical signs.
• Autonomic testing (heart rate variability, tilt table, sympathetic skin response, cardiac I-123-MIBG-SPECT) may show preclinical changes.
• Specific denervation may be seen on sphincter EMG.
Idiopathic Cerebellar Ataxia

- Type A -- with dementia
 (parenchymatous cerebellar cortical atrophy, prion diseases, Whipple’s disease)

- Type B -- with tremor

- Type C -- sporadic olivopontocerebellar atrophy
 multiple system atrophy
 other Parkinson’s plus syndromes (PSP)
 important to rule out SCA3
Treatable Causes of Non-Genetic Ataxia I

- Congenital
- Infectious/Post-infectious--Ebstein-Barr
 Enterovirus
- HTLV1 /HIV/Syphillis
 Lyme disease
- Measles, Rubella, Varicella
 Prion disease
 Whipple’s disease
- Post-anoxia, post-hyperthermia, post-trauma, and in chronic epilepsy
Treatable Causes of Non-Genetic Ataxia II

• Metabolic--acute thiamin (B1) deficiency
chronic vitamin B12 and E deficiencies
autoimmune thyroiditis and low thyroid

• Toxic------- drug reactions——amiodarone
cytosine arabinoside
5-fluorouracil
phenytoin
valproic acid

• environmental——acrylamide, alcohol,
organic solvents, organo-lead/mercury/tin,
inorganic bismuth/mercury/thallium
Treatable Causes of Non-Genetic Ataxia III
Immune System Targeting the Cerebellum

- Paraneoplastic---anti-Yo, Hu, Ri, MaTa, CV2
 anti-Calcium channel
 anti-CRMP-5, ANNA-1,2,3, mGluR1
- Other autoantibodies---
 anti-gliadin (most common—reported also in the inherited syndromes as a possible secondary factor, treated with gluten-free diet and anti-immune therapy)
 anti-GluR2, GAD, MPP1, GQ1b ganglioside
- Anti-immune therapy---steroids, plasmapheresis, IVIG, Rituxan, Cellcept, Methotrexate, and others.
TREATMENT GOALS

• Treat known causes--diet, replacement therapies
detoxification therapies

• Improve performance--
symptom-specific drugs
rehab/retraining of nerve pathways

• Prevent innocent bystander effects--use it or lose it

• Improve activities of daily living and quality of life

• Slow up disease progression--the Robin Hood tactic
anti-oxidants
neuroprotective drugs
?gene therapy, ?stem cell therapy
The non-genetic ataxias are currently the most challenging area of research in cerebellar disease and the area most deserving of heightened effort in the search for susceptibility genes, environmental triggers, lifestyle factors, and age-related influences.

They stand to benefit most from the National Ataxia Registry and Database.